
Eclipse-based Prometheus Design Tool ∗

Hongyuan Sun John Thangarajah Lin Padgham
School of Computer Science and IT

RMIT University
Melbourne, Australia

pdt@cs.rmit.edu.au

ABSTRACT
The Prometheus Design Tool (PDT) is a graphical tool that is used
to design a Multi-Agent System following the Prometheus Method-
ology. This paper describes the latest version of PDT which is now
integrated into the Eclipse platform, enabling the users to accom-
plish the full development life-cycle of an agent-oriented applica-
tion in one IDE and also inherit the rich set of product development
features that Eclipse provides. This version of PDT also aims to
support simpler integration with tools from other AOSE method-
ologies where appropriate.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

Keywords
Agent Software Engineering; Agent development techniques, tools
and environments; Development environments

1. INTRODUCTION
Designing the various components of a multi-agent system(MAS)

can be a complex task. The Prometheus Methodology [4] provides
guidance for an iterative design of the MAS in a top-down man-
ner where designers focus on one particular aspect at a time and
eventually identify all the elements of the system in a systematic
manner.

There are 3 main design stages: System specification where the
inputs, outputs, the actors, use cases (scenarios) and the goals of
the system are identified; Architectural design where roles, agents,
communication protocols and the overview of the internals of the
system are specified; and detailed design where each agents inter-
nals are detailed to a level that can be readily implemented. The
detailed design is at a conceptual level and abstracted away from
any particular implementation allowing the systems to be imple-
mented in the platform of choice, though the code generation fea-
ture of the tool currently supports only the JACK Intelligent Agents
implementation platform.

∗We would like to thank the many people who have worked on
PDT over the years.

Cite as: Title, Author(s), Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

PDT[3] 1 is developed to support the Prometheus design method-
ology by offering designers an integrated development environ-
ment that provides a graphical interface for system design, auto
code generation, type safety, entity propagation and others, some
of which we will outline below.

2. PDT FEATURES
The new version of PDT is developed as a plugin to the Eclipse

2 framework. The Eclipse IDE has rapidly grown over the last few
years as a popular IDE for developing software in particular Java
based applications. Some reasons for its popularity include that it
is open source, has a highly extensible framework and an extremely
active community. Some of the many built-in features Eclipse pro-
vides are file management, project management, version control-
ling, editing, coding and debugging tools. The PDT Eclipse plugin
inherits these rich features and thus upgrading the previous stand
alone version of PDT in many ways.

In this new version of PDT we also aim to make it easier to
incorporate aspects of other AOSE methodologies. The work in
[1] showed that there are many similarities between a number of
the major approaches to Agent Oriented Software Design. Never-
theless some approaches have particular aspects or features which
could be usefully incorporated into other approaches. Our aim is
to simplify the process of interfacing other tools, or parts of tools,
to PDT. In earlier work [7] we described how Islander [2] could be
integrated with PDT providing additional benefit to both method-
ologies. In our previous work the integration was hard-wired. Our
new Eclipse based framework provides a more modular and ro-
bust framework for such integration. We are currently collaborating
with the Tracy[6] group to map PDT design to the Tracy architec-
ture, enabling integration of these two approaches.

The above is also facilitated by the new format of the design out-
put file, which is still XML based but clearly separates out the de-
sign entities from their respective graphical icons and layout. The
new PDT produces a cleaner output file that can be easily managed.

We describe below some of the key features of PDT noting en-
hancements from the earlier version:

Graphical Editors: Each design phase in Prometheus has a num-
ber of associated diagrams representing aspects of the design. These
can be graphically created and edited in PDT. The new PDT dia-
gram editing has much improved performance (especially notice-
able on large projects) due to the new underlying representation
and enhanced algorithms.

The entities are also now represented using the unified graphi-

1From http://www.cs.rmit.edu.au/agents/pdt/
2From http://www.eclipse.org

1769



cal notations, agreed by the developers of several prominent AOSE
methodologies in an attempt to bring a greater coherence to the
area. This notation, and the rationale for the various choices is de-
scribed in [5]. This notation can also easily be changed should a
new standard emerge.

The layout of entities is also enhanced by features such as auto-
arrange, and the ability to bend connection links to avoid them over-
lapping with entities.

We also create a miniature view as part of the outline for users to
navigate a large-scale diagram more conveniently.

Entity Descriptors: the Eclipse tabbed property view is used to
view/edit the details of the properties of the various entities. This
information is better organized than in the earlier version of PDT
by using different tabs to group related attributes. For example, a
data entity has a general properties tab (for name, description etc.),
a data fields tab (describing the fields of the data) and an events
posted tab which describes any events posted when the data is mod-
ified.

Auto Propagation: Propagation of information between differ-
ent aspects of the design, in order to maintain consistency, has al-
ways been an important aspect of PDT, and is a crucial support
element even for medium sized projects. Primarily, propagation
occurs alongside creation or modification of relations. For exam-
ple, when a user associates an agent with a role, goals achieved
by the role should be automatically propagated to that agent. In
the new Eclipse-based PDT, propagation rules are defined in GEF
Command3 as part of the link operation. This allows separation of
propagation logic from the rest of the system. This is advantageous
for the ongoing evolution and maintenance of PDT, as it is not un-
common that as it is used by different groups with slightly different
approaches, new ways of doing things emerge. While consistency
must always be maintained, there may be multiple ways of achiev-
ing this. The new design more easily allows modification to ask the
user which option is desired, when such situations are discovered.

AUML Protocols: PDT employs a modified version of Agent UML
(AUML4) notation to display interaction protocols within the sys-
tem. These interaction protocols are defined using a textual nota-
tion [8] in PDT. The new version provides an upgraded text editor,
which supports syntax highlighting and auto-indentation, and helps
to examine for syntax errors of the protocol definition. An AUML
sequence diagram is generated for a protocol if there are no errors
in the textual definition.

Code Generation: PDT is able to generate skeleton code using
the detailed design descriptions. It also supports iteration between
coding and design, retaining code updates while generating new
skeleton code for updated design.

Currently the code is generated for the JACK agent-oriented lan-
guage5. An enhancement of the code generation feature in the new
version is that users can define the parameters such as the folder to
contain the generated code, the package name and a backup folder
that is used when code is regenerated. The ability to define the
package name in particular is a simple but necessary enhancement.

Drag And Drop Operation: This simple feature in the new PDT
allows for greater ease of modification of a design. In particular, in
the old PDT if a particular level (agent or capability) became too
complex, it was quite tedious to consolidate some related aspects

3http://www.eclipse.org/gef/
4http://www.auml.org
5www.agent-software.com

into a new capability - they had to be manually entered individually
into the new entity, links re-established, and then deleted from the
old. Now the new capability can be created and the related entities
simply dragged and dropped. This supports good design practice
of ensuring that each level is kept at an appropriate level of granu-
larity for comprehension.

Report Generation: PDT can export an HTML formatted report
for the design which comprises the graphical diagrams and textual
information. Users can also choose to export individual design di-
agrams where the resolution/size of the images can be customized.

3. ONGOING WORK
PDT is actively being developed and extended in line with re-

search work and industry or student feedback. The most important
current focus is inclusion of automated testing into the toolkit, and
we expect that substantial aspects of this will be integrated during
the coming year. We are also keen to provide code generation for
a range of platforms, and hope to work with interested parties to
incorporate this. We are currently working with the Tracy group to
explore how PDT can be used to design Tracy systems and generate
appropriate code.

There are also many smaller features which we are constantly
working to improve, such as better report generation, enhanced
consistency checking, language editing features such as syntax high-
lighting for JACK code, and the ability to create multiple versions
of a design in a scrap book, whilst investigating pros and cons of
different choices.

4. REFERENCES
[1] S. DeLoach, L. Padgham, A. Perini, A. Susi, and

J. Thangarajah. Using three AOSE toolkits to develop a
sample design. International Journal of Agent-Oriented
Software Engineering, 3(4):416–476, 2009.

[2] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic
institutions editor. In AAMAS 2002, pages 1045–1052. ACM,
July 2002.

[3] L. Padgham, J. Thangarajah, and M. Winikoff. Prometheus
design tool. In AAAI, pages 1882–1883, 2008.

[4] L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. John Wiley and Sons, 2004.
ISBN 0-470-86120-7.

[5] L. Padgham, M. Winikoff, D. Scott, and C. Massimo. A
unified graphical notation for aose. In Agent-Oriented
Software Engineering IX: 9th International Workshop, pages
116–130, May 12-13 2008.

[6] B. Peter, M. Ingo, S. Tino, K. Steffen, W. Volkmar, Schau, and
Rossak. Whitestein series in software agent technologies and
autonomic computing. In Tracy: An Extensible
Plugin-Oriented Software Architecture for Mobile Agent
Toolkits, pages 357–381. Birkhäuser Basel, 2006.

[7] C. Sierra, J. Thangarajah, L. Padgham, and M. Winikoff.
Designing institutional multi-agent systems. In
Agent-Oriented Software Engineering VII, 7th International
Workshop, AOSE 2006, Hakodate, Japan, May 8, 2006,
Revised and Invited Papers, volume 4405 of Lecture Notes in
Computer Science, pages 84–103. Springer, 2006.

[8] M. Winikoff. Defining syntax and providing tool support for
agent uml using a textual notation. Int. J. Agent-Oriented
Softw. Eng., 1(2):123–144, 2007.

1770




